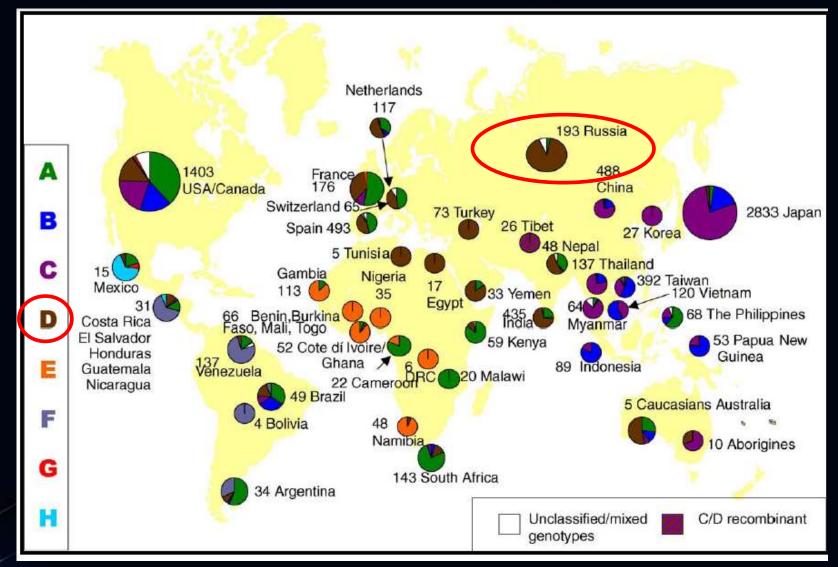

«БУБО-УНИГЕП» – универсальная вакцина для профилактики вирусного гепатита В

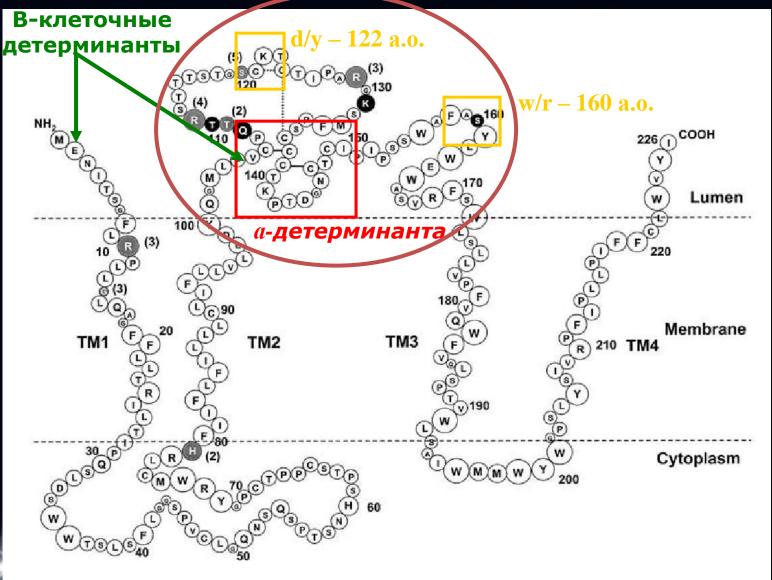
Коноплева М.В., Крымский М.А., Семененко Т.А., Суслов А.П.

> XVII Конгресс детских инфекционистов России Москва, 12-14 декабря 2018 года

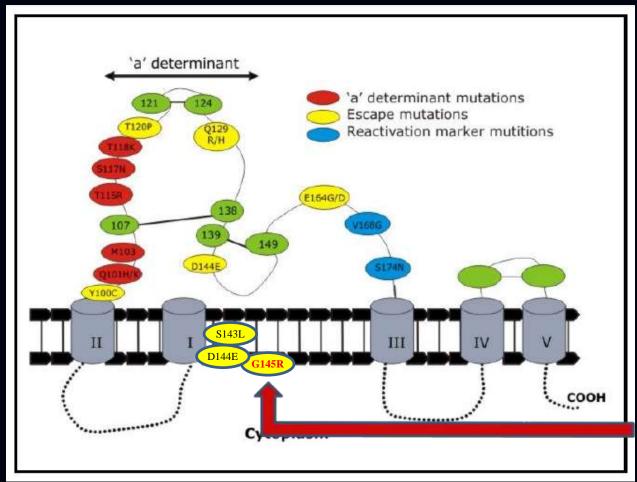
Вирус гепатита В: строение вируса и контроль инфекционного процесса


Антитела вырабатываться на различные белки вируса гепатита В (HBcAg, HBeAg, HBsAg, Pol), но

только анти-HBsAg ассоциированы с завершением и контролем инфекционного процесса


Все вакцины против гепатита В включают в состав HBsAg, HO различаются по структуре, антигенной специфичности и системе экспрессии этого HBsAg

Распространенность генотипов вируса гепатита В


В России, в отличие от большинства других стран, доминирует генотип D вируса гепатита В

Схематическая структура HBsAg

Субтипы/серотипы – adw, adr, ayw, ayr – имеют различное географическое распространение. В России доминирует субтип ау.

Мутации в HBsAg

Самый значимый мутант — G145R

Мутации в а-детерминанате HBsAg приводят к появлению мутантов вакцинального ускользания.

РАСПРОСТРАНЕННОСТЬ HBV С МУТАЦИЕЙ G145R

Страна	Год	Когорта пациентов	Специфическая иммунопрофилактика		% мутанта G145R	Ссылка
США	1993	Дети * (1092 чел.)	пассивно-активная вакцинация	23%	2%	François G., 2001
Сингапур	1995	дети * (345 чел.)	пассивно-активная вакцинация	12%	12%	Oon C.J., 1995
Тайвань	1999	вакцинированные дети HBV+(219 чел.)	активная вакцинация	28,1%	15,4%	Hsu H.Y. 2004
Китай		вакцинированные дети (6423 чел.)	активная вакцинация	6,5 - 14,8%	н/д**	Bian T., 2013
Россия	/	Хронические HBsAg+ (2510 чел.)	н/д**	0,76%	0,12%	Баженов А.И, 2007
Италия		Носители НВV-	н/д**	3,1%	2%	Sticchi L. 2013

активная

н/д**

н/д**

вакцинация

вакцинация

пассивно-активная

* Дети, рожденные от матерей-носительниц HBV; ** данные не приведены

Abdelnabi

Z. 2014

Özgüler

M. 2016

Семененко

T.A, 2016

Komatsu

H. 2016

7,5%

1,2%

H/Д**

6,6%

12,5%

8,5%

9,5%

н/д**

инфекции (256 чел.)

Носители HBV-

HBsAg+ (717 чел.)

Онкогемат.

2016 дети* (126 чел.)

инфекции (350 чел.)

2014 дети* (200 чел.)

2016

2016

Палестина

Турция

Россия


Япония

Математическая модель распространения мутантного G145R варианта HBV в условиях вакцинации HBsAg дикого типа при отсутствии перекрестной защиты против этого мутанта

Journal of Viral Hepatitis, 1998, 5 (Suppl 2), 25-30

Current status of HBV vaccine escape variants – a mathematical model of their epidemiology

J. N. Wilson¹, D. J. Nokes² and W. F. Carman³ Wellcome Trust Centre for the Epidemiology of Infectious Disease, University of Oxford, Oxford OX1 3PS, ²Department of Biological Sciences, University of Warwick, Coventry, ³Institute of Virology, University of Glasgow, Church Street, Glasgow, UK

HBV дикого типа исчезнет через 200 лет

Мутант G145R станет повсеместно распространенным к 2060 году.

Аналогичная модель была разработана в России в 2015г.

Результаты совпали.

M.HАсатрян Процесс распространения гепатита федеральных территориях округов Российской Федерации (компьютерное Эпидемиология моделирование) инфекционные болезни Актуальные вопросы. – 2015. – Т. 2. – С. 4-9.

Профиль анти-HBsAg антительной активности у вакцинированных лиц (тест нейтрализации)

Баженов А.И. и др. Выявление антител к мутантным формам HBsAg у лиц иммунизированных против гепатита В вакцинами разных субтипов // Эпидемиология и Вакцинопрофилактика. -2011. - T.5, №60. -C.49-53.

Современные вакцины не обеспечивают кросс-реактивную защиту против G145R.

Необходима разработка рекомбинантных вакцин нового поколения, обеспечивающих индукцию протективного иммунитета как против дикого типа, так и против НВsAg-мутантных вариантов вируса гепатита В для предупреждения их распространения.

Зарубежные патенты о разработке вакцин против эскейп-мутантов HBV

«Merck and Co. Inc.» HBsAg escape mutant vaccine. EU Patent 0511 855 A1, publication date 04.11.1992.

Thomas H.C., Carman W.F. Hepatitis B vaccine. Patent US 5.639.637, publication date 17.06.1997.

<u>DiaSorin International Inc.»</u> Escape mutant of the surface antigen of hepatitis B virus. Patent US 6.172.193 B1, publication date 09.01.2001.

Данные патенты не привели к реальному созданию вакцин!

Концепция: ay+ad+G145R Антигенная характеристика природного эскейп-мутанта G145R HBV и различных рекомбинантных HBsAg с мутацией G145R: отбор кандидатного антигена для разработки вакцины

	arrioro				i past							
Вид		Относительная реактивность анти-HBsAg-коньюгатов, ф _{кг}										
HBsAg	Антиген	11F3	NF5	X7	10D10	H2	H10	4F5	NE2	HB4	5H7	KAT
r/nHBsAg w.t.	adw	1000	1320	500	930	11960	890	350	890	790	1230	730
	ayw	1230	340	260	400	1590	1210	280	600	600	700	660
nHBsAg с мутацией G145R	111	0,3	714	0,05	0,2	2600	4,7	2,3	0,3	0,4	0,4	200
	1537	0,3	56	0,37	0,5	500	16	56	0,6	0,7	0,9	500
	2043	0,1	143	0,08	0,1	250	33	53	0,3	0,4	0,2	500
rHBsAg с мутацией G145R	HBV 203	333	333	101	167	143	250	167	250	200	2000	2000
	HBS-878	1000	2000	250	250	1000	333	250	1000	1000	3000	1000
	ESC-01	2,3	250	20	7,6	3000	9,1	5,6	0,6	91	1,3	250
	ESC-02	2,3	125	20	7,6	3000	8,8	8,1	0,0	91	0,0	143
	ESC-03	0,0	278	0,0	0,0	3200	16,1	5,3	0,6	0,0	1,3	1000
	ESC-10	0,0	400	0,0	0,0	3200	0,0	0,0	0,0	0,0	0,0	357
	ESC-11	0,0	217	0,0	0,0	3200	0,0	0,0	0,0	0,0	0,0	119
	ESC-12	0,0	164	0,0	0,0	2650	5,9	0,0	0,0	0,0	0,0	164
	ESC-13	0,0	1434	0,0	0,0	1300	0,0	0,0	0,0	0,0	0,0	1300
	ESC-17	0,0	525	0,0	0,0	3300	8,1	0,0	0,0	0,0	0,0	458

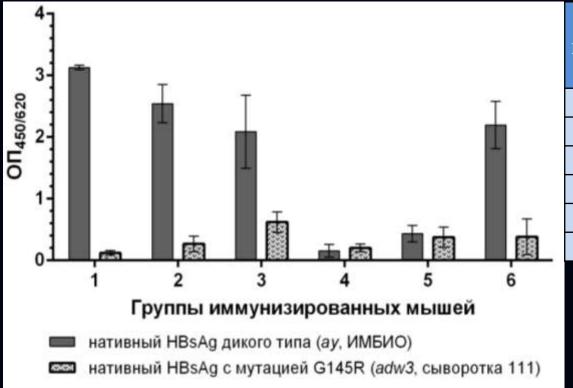
ESC - кандидатный антиген для разработки вакцины против мутанта G145R вируса гепатита В

Иммуногенность ESC-антигена in vitro

HBsAg дикого типа


- усиление экспрессии ко-стимуляторной молекулы CD86 на B-клетках,
- продукция TNF-α, IL-10 и IFN-γ иммунными клетками крови, не зависящую от уровня анти-HBsAg.

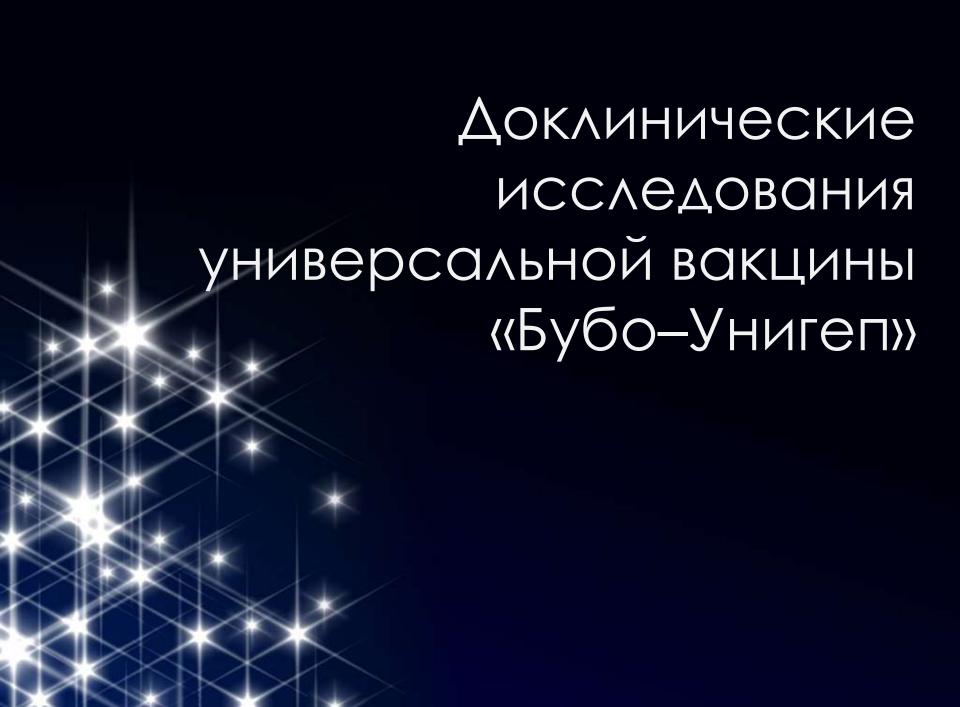
HBsAg c G145R (ESC-антиген)


- развитие иммунного ответа с продукцией IL-2,
- подавляет ФГА-индуцированную активацию молекулы CD69 на B-клетках, NK-клетках и на CD8+ T-клетках.

HBsAg с мутацией G145R кардинально отличается от HBsAg дикого типа по иммуногенности *in vitro*

Исследование морфологии рекомбинантных ESCантигенов с мутацией G145R, экспрессированных в дрожжах H.polymorpha с разными условиями очистки

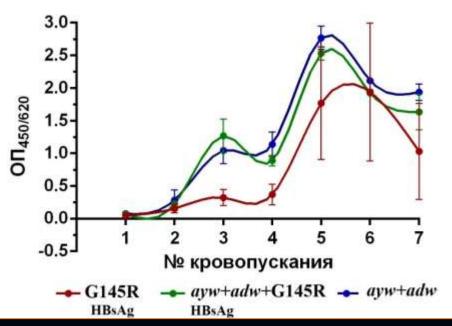
Иммуногенность ESC-антигена и комбинации антигенов ay+ad+ESC in vivo на мышах

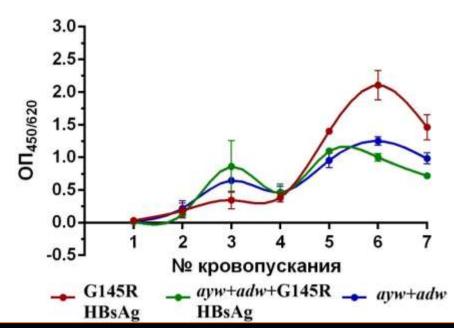


Иммуногенные свойства ESC-антигена как против нативного HBs отличаются от HBsAg дикого типа по уровню дикого типа, так и против ответа и специфичности антител, что согласуется нативного мутанта G145R с данными in vitro

N	HBs	Адъю-	
груп-	Тип	Тип Доза,	
пы		ү/мышь	
1	ay:ad	1:1	Al(OH) ₃
2	ay:ad:Esc	1: 1: 1	Al(OH) ₃
3	ay:ad:Esc	1: 1: 5	Al(OH) ₃
4	Esc	1	Al(OH) ₃
5	Esc	5	Al(OH) ₃
6	ay:ad:Esc	1: 1: 1	PIC

Комбинированная рекомбинантная вакцина обладала иммуногенностью и генерировала иммунный ответ как против нативного HBsAg дикого типа, так и против нативного мутанта G145R


ВАКЦИНА «БУБО— УНИГЕП»



Уровень специфического гуморального ответа у овец, иммунизированных рекомбинантными HBsAg дикого и мутантного типа

Ответ на природный HBsAg дикого типа (ad+ay)

Ответ на природный HBsAg с мутацией G145R (*ay*)

rHBsAg дикого и мутантного G145R типа при иммунизации ведут себя как различные антигены, что согласуется с данными *in vitro* и *in vivo* (на мышах)

Вакцина обладала иммуногенностью и генерировала иммунный ответ как против нативного HBsAg дикого типа, так и против нативного мутанта G145R

Изучение иммунологической безопасности, аллергизирующего и иммунотоксического действия препарата «Бубо-Унигеп» (ЗАО НПК «КОМБИОТЕХ»)*

Аллергенное действие

(метод накожных аппликаций)

- нанесение на кожу морских свинок не привело к изменению состояния кожных покровов у животных
- нанесение препарата животным в течение 14-ти дней не сопровождалось изменением толщины кожной складки.

Внутри– брюшинное введение

(в дозе 1 мл в течение 14 дн.)

- не вызывало достоверного изменения массы тимуса, селезенки и подколенных лимфоузлов.
- не приводило к значимым изменениям интенсивности хемилюминесцентного ответа нейтрофилов, стимулированных опсонизированным зимозаном, не вызывало достоверного увеличение фагоцитарного индекса.
- не влияло на клеточный иммунитета (ГЗТ).
- показано увеличение антителообразования в группе «Бубо-Унигеп» по сравнению с препаратом сравнения

*в сравнении с зарегистрированным препаратом Вакцина гепатита В рекомбинантная дрожжевая (производства ЗАО НПК «КОМБИОТЕХ»)

Изучение общей токсичности и местнораздражающего действия препарата «Бубо-Унигеп» (ЗАО НПК «КОМБИОТЕХ»)* на белых беспородных половозрелых мышах и крысах линии Вистар

Острая токсичность

(мыши, 1х в/б введение)

- препарат является не токсичным при однократном введении вплоть до превышения дозы в 3000 раз в пересчете на вес тела.
- отличий в токсическом действии с препаратом сравнения не обнаружено.
- 6 степень токсичности (относительно безвредно),
- не оказывает местно-раздражающего действия.

Хроническая токсичность

(крысы, в/б введение в течение 30 дн.)

- не вызывает нарушений функционального состояния основных органов и систем организма при введении в эквитерапевтической дозе и превышающих терапевтическую в 3 раза.
- является не токсичным при введении с суммарным превышением нормальной дозы в 9000 раз.
- отличий в токсическом действии с препаратом сравнения не обнаружено.
- не оказывает местно-раздражающего действия.

Заключение по изучению безопасности

- Вакцина гепатита В рекомбинантная дрожжевая не оказывают аллергизирующего и иммунотоксического действия.
- Показанное увеличение антителообразования в группе Бубо-Унигеп по сравнению с группой Вакцина гепатита В рекомбинантная дрожжевая потенциально связанна с основным фармакодинамическим действием препарата.
- По результатам исследования общей токсичности, местно-раздражающего действия вакцина «Бубо—Унигеп» и препарат сравнения являются эквитоксичными.

Это позволяет рекомендовать препарат «Бубо-Унигеп», вакцина против гепатита В 3-х валентная, (производства ЗАО НПК «КОМБИОТЕХ») для клинического изучения

КЛИНИЧЕСКИЕ ИСПЫТАНИЯ (1 фаза)

Открытое, одноцентровое, нерандомизированное клиническое исследование безопасности и реактогенности трехвалентной вакцины гепатита В рекомбинантной дрожжевой «Бубо®-Унигеп» у здоровых добровольцев после однократной внутримышечной инъекции

ПРОВОДИТСЯ...

СПАСИБО ЗА ВНИМАНИЕ!

